13 research outputs found

    Techniques for assessing the investment attractiveness of a commercial organization based on classical methods of strategic economic analysis

    Get PDF
    Purpose: The development of methodological support for assessing the investment attractiveness of a commercial organization, considering modern information requests of stakeholders. Design/Methodology/Approach: As part of the research, the authors have developed an algorithm for investment attractiveness assessment of a commercial organization by using the scenario method of economic analysis. Findings: It is proved that the main disadvantages of the existing methods of assessing investment attractiveness are: the lack of strategic orientation of the assessment; ignoring the influence of most external and internal factors of activity; the inability to assess the risk of investing in the analyzed object; the need to compare with the level of investment attractiveness of similar organizations for an objective interpretation of the results. Practical implications: To eliminate the significant shortcomings of modern methodological support in this area, the authors recommend the use of scenario method of strategic economic analysis in the process of assessing the investment attractiveness of the organization. Originality/Value: The scenario method of strategic economic analysis proposed by the authors complements the existing approaches with the ability to take into account potential risks when making a far-sighted decision to invest in an organization by combining the results of retrospective analysis and forecasting changes in the quantitative and qualitative characteristics of financial and economic activity.peer-reviewe

    Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa

    Get PDF
    Proxies for estimating nucleation mode number concentrations and further simplification for their use with satellite data have been presented in Kulmala et al. (2011). In this paper we discuss the underlying assumptions for these simplifications and evaluate the resulting proxies over an area in South Africa based on a comparison with a suite of ground-based measurements available from four different stations. The proxies are formulated in terms of sources (concentrations of precursor gases (NO2 and SO2) and UVB radiation intensity near the surface) and a sink term related to removal of the precursor gases due to condensation on pre-existing aerosols. A-Train satellite data are used as input to compute proxies. Both the input data and the resulting proxies are compared with those obtained from ground-based measurements. In particular, a detailed study is presented on the substitution of the local condensation sink (CS) with satellite aerosol optical depth (AOD), which is a column-integrated parameter. One of the main factors affecting the disagreement between CS and AOD is the presence of elevated aerosol layers. Overall, the correlation between proxies calculated from the in situ data and observed nucleation mode particle number concentrations (Nnuc) remained low. At the time of the satellite overpass (13:00–14:00 LT) the highest correlation is observed for SO2/CS (R2 = 0.2). However, when the proxies are calculated using satellite data, only NO2/AOD showed some correlation with Nnuc (R2 = 0.2). This can be explained by the relatively high uncertainties related especially to the satellite SO2 columns and by the positive correlation that is observed between the ground-based SO2 and NO2 concentrations. In fact, results show that the satellite NO2 columns compare better with in situ SO2 concentration than the satellite SO2 column. Despite the high uncertainties related to the proxies calculated using satellite data, the proxies calculated from the in situ data did not better predict Nnuc. Hence, overall improvements in the formulation of the proxies are needed

    Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa

    Get PDF
    Proxies for estimating nucleation mode number concentrations and further simplification for their use with satellite data have been presented in Kulmala et al. (2011). In this paper we discuss the underlying assumptions for these simplifications and evaluate the resulting proxies over an area in South Africa based on a comparison with a suite of ground-based measurements available from four different stations. The proxies are formulated in terms of sources (concentrations of precursor gases (NO2 and SO2) and UVB radiation intensity near the surface) and a sink term related to removal of the precursor gases due to condensation on pre-existing aerosols. A-Train satellite data are used as input to compute proxies. Both the input data and the resulting proxies are compared with those obtained from ground-based measurements. In particular, a detailed study is presented on the substitution of the local condensation sink (CS) with satellite aerosol optical depth (AOD), which is a column-integrated parameter. One of the main factors affecting the disagreement between CS and AOD is the presence of elevated aerosol layers. Overall, the correlation between proxies calculated from the in situ data and observed nucleation mode particle number concentrations (N-nuc) remained low. At the time of the satellite overpass (13: 00-14: 00 LT) the highest correlation is observed for SO2/CS (R-2 D 0.2). However, when the proxies are calculated using satellite data, only NO2/AOD showed some correlation with N-nuc (R-2 D 0.2). This can be explained by the relatively high uncertainties related especially to the satellite SO2 columns and by the positive correlation that is observed between the ground-based SO2 and NO2 concentrations. In fact, results show that the satellite NO2 columns compare better with in situ SO2 concentration than the satellite SO2 column. Despite the high uncertainties related to the proxies calculated using satellite data, the proxies calculated from the in situ data did not better predict N-nuc. Hence, overall improvements in the formulation of the proxies are needed.Peer reviewe

    Manipulation planning under changing external forces

    Get PDF
    This paper presents a planner that enables robots to manipulate objects under changing external forces. Particularly, we focus on the scenario where a human applies a sequence of forceful operations, e.g. cutting and drilling, on an object that is held by a robot. The planner produces an efficient manipulation plan by choosing stable grasps on the object, by intelligently deciding when the robot should change its grasp on the object as the external forces change, and by choosing subsequent grasps such that they minimize the number of regrasps required in the long-term. Furthermore, as it switches from one grasp to the other, the planner solves the bimanual regrasping in the air by using an alternating sequence of bimanual and unimanual grasps. We also present a conic formulation to address force uncertainties inherent in human-applied external forces, using which the planner can robustly assess the stability of a grasp configuration without sacrificing planning efficiency. We provide a planner implementation on a dual-arm robot and present a variety of simulated and real human-robot experiments to show the performance of our planner

    Age-Dependent Targeting of Protein Phosphatase 1 to Ca2+/Calmodulin-Dependent Protein Kinase II by Spinophilin in Mouse Striatum

    Get PDF
    Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1)-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII) directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging

    Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways

    Get PDF
    Neurotransmission and synaptic strength depend on expression of post-synaptic receptors on the cell surface. Post-translational modification of receptors, trafficking to the synapse through the secretory pathway, and subsequent insertion into the synapse involves interaction of the receptor with A-kinase anchor proteins (AKAPs) and scaffolding proteins. Neurobeachin (Nbea), a brain specific AKAP, is required for synaptic surface expression of both glutamate and GABA receptors. Here, we investigated the role of Nbea-dependent targeting of postsynaptic receptors by studying Nbea interaction with synapse-associated protein 102 (SAP102/Dlg3) and protein kinase A subunit II (PKA II). A Nbea mutant lacking the PKA binding domain showed a similar distribution as wild-type Nbea in Nbea null neurons and partially restored GABA receptor surface expression. To understand the relevance of Nbea interaction with SAP102, we analysed SAP102 null mutant mice. Nbea levels were reduced by ~80 % in SAP102 null mice, but glutamatergic receptor expression was normal. A single-point mutation in the pleckstrin homology domain of Nbea (E2218R) resulted in loss of binding with SAP102. When expressed in Nbea null neurons, this mutant fully restored GABA receptor surface expression, but not glutamate receptor expression. Our results suggest that the PKA-binding domain is not essential for Nbea’s role in receptor targeting and that Nbea targets glutamate and GABA receptors to the synapse via distinct molecular pathways by interacting with specific effector proteins
    corecore